Galnet - Galician WordNet 3.0

logo sli

Explore Galnet

Galego | English

Version:
Search variants in 
ili-30-06752293-n CILI: i71977
WordNet Domains: mathematics philosophy
SUMO Ontology: entails+
Basic Level Concept: 06722453-n statement
Epinonyms: [2] statement
[2] statement |1|
[1] ili-30-06750804-n (has_hyperonym) |1|
[0] ili-30-06752293-n (has_hyperonym) |1|
Polarity:
  positive negative
SentiWordNet: 0.125 0
ML-SentiCon: 0.125 0.125
Time:
  past present future atemporal
TempoWordNet: 0 0 0 1

Explore the terminological domain with [Termonet]
GL Variants
- teorema [teoˈɾɛma̝] [teoˈɾema̝] · [RILG] [DRAG]
CA Variants
- teorema
EU Variants
- teorema
ES Variants
- teorema
EN Variants
- theorem ['θɪrəm]
Gloss
DE Variants
- Satz
- Theorem
IT Variants
- teorema
FR Variants
- phrase
- théorème
Lexical relations in WordNet via ILI (12) - Show / Hide graph:
Hyperonyms
(has_hyperonym)
06750804-n: (logic) a statement that affirms or denies something and is either true or false
Hyponyms
(has_hyponym)
06036939-n: a theorem giving the expansion of a binomial raised to a given power
Glosses
(gloss)
01296718-a: capable of being deduced
Glosses
(gloss)
06750804-n: (logic) a statement that affirms or denies something and is either true or false
Glosses
(gloss)
06753299-n: (logic) a proposition that is accepted as true in order to provide a basis for logical reasoning
Glosses
(rgloss)
00873381-n: drawing a figure satisfying certain conditions as part of solving a problem or proving a theorem
Glosses
(rgloss)
04736337-n: (geometry) the interchangeability of the roles of points and planes in the theorems of projective geometry
Glosses
(rgloss)
05918379-n: (statistics) a theorem describing how the conditional probability of a set of possible causes for a given observed event can be computed from knowledge of the probability of each cause and the conditional probability of the outcome of each cause
Glosses
(rgloss)
06036939-n: a theorem giving the expansion of a binomial raised to a given power
Glosses
(rgloss)
06647864-n: proof of a mathematical theorem
Glosses
(rgloss)
06647960-n: proof of a logical theorem
Glosses
(rgloss)
11250056-n: Greek philosopher and mathematician who proved the Pythagorean theorem; considered to be the first true mathematician (circa 580-500 BC)